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Allée Camille Soula, F-31400 Toulouse, France

2CNRS; IMFT; F-31400 Toulouse, France

(Received 6 March 2009; revised 31 August 2009; accepted 7 September 2009;

first published online 23 December 2009)

An experimental investigation of the flow generated by a homogeneous population of
bubbles rising in water is reported for three different bubble diameters (d = 1.6, 2.1 and
2.5 mm) and moderate gas volume fractions (0.005 � α � 0.1). The Reynolds numbers,
Re =V0d/ν, based on the rise velocity V0 of a single bubble range between 500 and
800. Velocity statistics of both the bubbles and the liquid phase are determined
within the homogeneous bubble swarm by means of optical probes and laser
Doppler anemometry. Also, the decaying agitation that takes place in the liquid
just after the passage of the bubble swarm is investigated from high-speed particle
image velocimetry measurements. Concerning the bubbles, the average velocity is
found to evolve as V0α

−0.1 whereas the velocity fluctuations are observed to be
almost independent of α. Concerning the liquid fluctuations, the probability density
functions adopt a self-similar behaviour when the gas volume fraction is varied, the
characteristic velocity scaling as V0α

0.4. The spectra of horizontal and vertical liquid
velocity fluctuations are obtained with a resolution of 0.6 mm. The integral length
scale Λ is found to be proportional to V 2

0 /g or equivalently to d/Cd0, where g is the
gravity acceleration and Cd0 the drag coefficient of a single rising bubble. Normalized
by using Λ, the spectra are independent on both the bubble diameter and the volume
fraction. At large scales, the spectral energy density evolves as the power −3 of
the wavenumber. This range starts approximately from Λ and is followed for scales
smaller than Λ/4 by a classic −5/3 power law. Although the Kolmogorov microscale
is smaller than the measurement resolution, the dissipation rate is however obtained
from the decay of the kinetic energy after the passage of the bubbles. It is found
to scale as α0.9V 3

0 /Λ. The major characteristics of the agitation are thus expressed
as functions of the characteristics of a single rising bubble. Altogether, these results
provide a rather complete description of the bubble-induced turbulence.
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1. Introduction
In many practical situations, bubbles are dispersed in a continuous liquid phase:

pipe flow for oil transport, bubble columns for chemical processing, vapour generators
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for energy production. Due to the large density difference between gases and liquids,
the bubbles do not move at the same velocity as the liquid. The bubbles thus cause
velocity disturbances to the liquid that collectively generate a complex agitation.
However, this bubble-induced agitation – also called pseudo-turbulence – is often
not the only cause of liquid agitation. When the liquid flow is already turbulent in
the absence of the bubbles, the overall agitation results from the two-way coupling
between classic shear-induced turbulence and bubble-induced agitation. It therefore
depends on the structure of these two kinds of agitation and, in particular, on their
relative magnitudes and characteristic scales of time and length. The knowledge of
pure bubble-induced agitation – that is to say in absence of shear-induced turbulence –
is nevertheless required prior to understand this coupling.

An essential ingredient in bubble-induced agitation is the nature of the decay of
the velocity disturbance U generated by a bubble with the distance r to this bubble.
For an isolated bubble of diameter d moving at velocity V in a fluid of viscosity ν,
this decay depends on the Reynods number, Re =V d/ν. At vanishing Re, the Stokes
solution shows that the disturbance decays as r−1. Because of this slow decay, the
summation of the flow disturbances generated by a homogeneously distributed swarm
of bubbles leads to the divergence of the variance of the fluctuations with the size
of the container (Calfish & Luke 1985). At any finite Re, a wake develops behind
the bubble wherein the disturbance again decays as r−1; the linear summation of all
individual bubble contributions therefore also leads to the divergence of the variance
(Parthasarathy & Faeth 1990). At moderate-to-large Re, the non-divergence of the
velocity variance is due to the fact that wakes of interacting bubbles are attenuated
compared to that of an isolated bubble. For 1 < Re < 10, Koch (1993) proposed
a screening mechanism due to a deficit of particles in the wake of a test particle,
which caused the disappearance of the wake disturbance at a distance that depends
on the gas volume fraction α and scales as dα−1. Experimental evidence of wake
attenuation related to a deficit of bubbles in the wake of a test bubble was found
by Cartellier & Rivière (2001) in uniform bubbly flows for Reynolds numbers of
order 10. At large Reynolds numbers, a non-uniform distribution of the bubbles is
however not required to observe wake attenuation. Hunt & Eames (2002) showed
that sequences of positive and negative strains might cause diffusion and cancellation
of vorticity leading to wake attenuation. Another possible mechanism is the mixing
of vorticity components of opposite signs belonging to neighbour wakes, which can
make themselves disappear rapidly. White & Nepf (2003) and Eames et al. (2004)
modelled this mechanism for a random array of bodies in a uniform flows and found
an exponential wake attenuation with a length scale proportional to dC−1

d α−1, where
Cd is the drag coefficient of a body. Experimental evidence of such an exponential
attenuation was observed in bubbly flows by Risso et al. (2008) for Reynolds numbers
of several hundreds. However, although the length scale was indeed proportional to
dC−1

d , it was found independent of the gas volume fraction for 0.01 � α � 0.14. In this
work, we shall focus on this regime for which the liquid agitation essentially results
from nonlinear interactions between bubble wakes.

Ensuring that bubble-induced turbulence is the major contribution to the agitation
in bubbly flows imposes very restrictive experimental conditions. A first way to
achieve this goal is to inject bubbles in a upward flow within a channel, the width
of which is large enough to allow the existence of an adequate central part where
the liquid flow is uniform. The advantage of this configuration is that the use of
hot-wire velocimetry is possible thanks to the existence of a significant average liquid
velocity. The inconvenient is that turbulence generated at the wall is also present.



Characterization of bubble-induced agitation 511

Such a configuration was used in the pioneering work devoted to the structure of
high-Reynolds-number bubble-induced agitation by Lance & Bataille (1991). Theses
authors added a grid at the channel inlet to control the properties of the incoming
turbulence and studied the interaction between bubble-induced agitation and shear-
induced turbulence. But since they considered large bubbles (d = 5 mm), the bubble-
induced agitation was predominant at moderate gas volume fractions. Comparable
experimental set-ups, but without initial grid, were then considered by Garnier,
Lance & Marié (2002) and in the PhD work of Larue de Tournemine (2001), which
has been partly published in Roig & Larue de Tournemine (2007).

Another possible configuration is the bubble column, where bubbles are injected
at the bottom of a tank filled with a liquid initially at rest and leave it from the free
surface located at the top. Since the only cause of motions is the buoyancy-driven rise
of the bubbles, this configuration seems the best choice for the study of the specific
properties of the bubble-induced turbulence. It is however not so easy because most
bubble columns are unstable, which means that large recirculation loops develop, the
liquid generally rising close to the channel centre and descending close to the wall.
In this case, shear-induced turbulence is also generated, especially at the walls. It
is only when a particular care is taken to inject the bubbles uniformly at the tank
bottom that a homogeneous swarm of bubbles without any average liquid flow can
be generated for significant gas volume fractions (from several per cents to several
tens of per cents). Bubble-induced turbulence in such a stable bubble column has
been investigated by Zenit, Koch & Sangani (2001), Risso & Ellingsen (2002) and
Martinez-Mercado, Palacios-Morales & Zenit (2007). Zenit et al. (2001) considered
bubbles of d = 1.4mm rising in water. This case was chosen to ensure a large Reynolds
number concurrently to a small enough Weber number, with the aim to check the
predictions of potential flow theory that required negligible bubble wakes. The use of a
hot wire allowed the measurement of the liquid velocity variance for volume fractions
up to 0.17, but prevented the separation of vertical and horizontal components of
the fluctuations because of the lack of an average liquid velocity. On the other hand,
Risso & Ellingsen (2002) considered high-Reynolds-number ellipsoidal bubbles of
d = 2.5 mm rising in water. By using laser Doppler anemometry (LDA), they provided
a detailed description of the liquid fluctuations, however restricted to gas volume
fractions less than 0.01. More recently, Martinez-Mercado et al. (2007) used solutions
of glycerin and water to vary the liquid viscosity and investigated the effect of the
Reynolds number in the range 10 � Re � 500, and they used a smart flying hot-wire
technique to overcome the drawbacks of hot wire in the absence of mean flow. It is
important to remark that, in all the investigations mentioned above, the populations
of bubbles are approximately monodisperse, which allows to discuss the role of the
bubble diameter. Except in the case of Lance & Bataille (1991), the bubbles were
generated by using a regular array of capillary tubes.

The description of high-Reynolds-number bubbly flow involves the dynamics of
both the bubbles and the liquid. Concerning the dispersed phase, all studies show
that the mean velocity of the bubble 〈V 〉 is a decreasing function of α. This decrease
is attributed to the hindrance effect that corresponds to the fact that a backward flux
of liquid has to develop in the interstitial flow between the bubbles to balance the
volume of liquid that is entrained in the bubble vicinity. There is no general model for
this phenomenon and the results of Martinez-Mercado et al. (2007) indicate that it is
likely to depend on both the flow regime (Reynolds number) and the bubble shape
(Weber number). Moreover, even for a given set of these parameters, several regimes
have to be distinguished depending on α. In particular, the value of 〈V 〉 measured for
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the lowest volume fraction available in the experiments (a few tenths of a percent)
is systematically lower than the value V0 corresponding to the single rising bubble.
The hindrance mechanisms then require a minimum volume fraction to develop.
Also, Roig & Larue de Tournemine (2007) showed that, although taking into account
the potential flows around the bubbles was sufficient to predict 〈V 〉 for α < 0.02,
the liquid flux entrained in the wake became predominant for larger α. Then, for
large volume fractions (0.1 � α � 0.3), Garnier et al. (2002) observed that 〈V 〉 scaled
as α1/3. On the other hand, the fluctuations of the bubble velocity follow a totally
different trend than the average velocity. At low volume fractions (0.005 � α � 0.01),
Risso & Ellingsen (2002) found that the bubble agitation was similar to that of a
single rising bubble and was thus driven by the vortex shedding that occurred in the
wake. Martinez-Mercado et al. (2007) then showed that the variance of the bubble
velocity remained almost constant for volume fractions up to at least 0.1. The bubble
agitation thus appears to depend neither on the bubble rise velocity nor on the liquid
dynamics, which both depend on α.

Concerning the liquid agitation, Risso & Ellingsen (2002) showed that the
probability density functions (PDFs) of the velocity fluctuations were independent
of the gas volume fraction, provided the velocity was normalized by V0α

0.4. This
self-similar behaviour, originally obtained for 0.005 � α � 0.01 and Re = 800 was
confirmed by Martinez-Mercado et al. (2007) to hold for volume fractions up to
0.1 and Reynolds numbers from 10 to 500. Another important feature of the liquid
agitation is the spectral distribution of the fluctuating energy with the wavenumber
k. In the context of bubbly flows, Lance & Bataille (1991) were the first to find a
spectral density of energy evolving as k−8/3 and to claim that it was the signature
of the bubble-induced turbulence. Then, depending on the bubbly flow that was
investigated, a range of wavenumbers with an exponent close to −3 was observed
or not (see Rensen, Luther & Lohse 2005, for a detailed review). The comparisons
between the different works is complicated for two reasons. The first reason is that
the spectra are generally computed from signals which are interpolated during the
intervals when bubbles are present at the measuring point; the exponent of the spectra
may therefore depend on the interpolation method that is used. The second reason
arises from the fact that shear-induced turbulence is in most cases also present; it
can be generated at the wall, such as in pipe flows, or due to large mean velocity
gradients when the gas distribution is inhomogeneous, such as in unstable bubble
columns. However, in a similar configuration as Lance & Bataille (1991), but with
a more recent instrumentation, Larue de Tournemine (2001) obtained a spectrum
evolving as k−3. It seems therefore likely that bubble-induced turbulence generates a
spectral range in k−n, with an exponent n close to 3. Nevertheless, we still ignore at
which wavelengths this range starts and stops. Generally speaking, we can say that
a satisfactory description of the bubble-induced agitation required the knowledge of
the characteristic scales of the various spectrum ranges.

The objective of the present work is to determine the main characteristics of the
bubble-induced agitation at high Reynolds numbers and moderate volume fractions.
To achieve this goal, we carried out an experimental study of a stable bubble column
in which air bubbles of three different diameters (d = 1.6, 2.1 or 2.5 mm) are rising
in water for moderate volume fractions (0.005 � α � 0.1). The originality of this
investigation is to consider both the steady flow within the homogeneous bubble
swarm and the decaying agitation after the air injection has been stopped. First, the
characteristic velocity scales of both the liquid and the bubbles are measured within
the bubble swarm by means of dual optical probe and LDA. Second, the large scales of
the spectrum of the liquid fluctuations are determined from particle image velocimetry
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Figure 1. Experimental set-up.

(PIV) measurements in the region free of bubbles that immediately follows a swarm
of rising bubbles. Then, the decay of the kinetic energy of the liquid agitation after
the passage of the bubble swarm is used to determine the rate of dissipation.

The paper is organized as follows. The experimental set-up and the measurement
techniques are detailed in § 2. The results concerning the bubbles, the liquid agitation
within and after the bubble swarm are successively presented in §§ 3, 4 and 5. Finally,
the characteristic velocity and length scales as well as the dissipation rate are expressed
as functions of the bubble diameter, the rise velocity of an isolated bubble and the
gas volume fraction in § 6.

2. Experimental set-up and instrumentation
The experimental set-up is depicted in figure 1. The test section [1] is an open

tank of 1000 mm height with a squared cross-section of 150 mm width. To allow
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dc Nc d χ V0 A f θ Re We St Cd0

(mm) (−) (mm) (−) (mm s−1) (mm) (Hz) (◦) (−) (−) (−) (−)

0.10 841 1.6 ± 0.2 1.4 335 0 0 0 540 2.6 0 0.19
0.20 841 2.1 ± 0.1 1.7 320 4.9 4.6 25 670 3.1 0.030 0.27
0.33∗ 196 2.5 2.0 309 4.3 6.3 25 770 3.4 0.051 0.34
0.40 361 2.5 ± 0.2 2.0 305 5.2 5.0 28 760 3.3 0.041 0.35

Table 1. Characteristics of single rising bubbles for the three classes of capillaries: dc , capillary
inner diameter; Nc , number of capillaries in each injector set; d = (6ϑ/π)1/3, bubble equivalent
diameter (ϑ is the bubble volume); χ , bubble aspect ratio; V0, average vertical velocity; A,
amplitude of the oscillatory path; f , path oscillation frequency; θ , maximal inclination of
the bubble velocity; Re = ρ d V0/μ, Reynolds number (ρ and μ are the liquid density and
viscosity); We = ρ d V 2

0 /σ , Weber number (σ is the interfacial tension); St = f d/V0, Strouhal

number; Cd0 = 4 d g/(3 V 2
0 ), drag coefficient; ∗, bubbles studied by Ellingsen & Risso (2001).

full optical access the four sides are of a glass construction. The tank is filled with
filtered tap water and air bubbles are injected at the bottom through a removable
set of injectors [2]. An injector set is constituted of a regular array of steel capillary
tubes that open into a pressurized air chamber [3]. Capillaries of three different inner
diameters, dc =0.1, 0.2 and 0.4 mm, are used to vary the bubble size (table 1). The
system possesses three operating modes. First, isolated bubbles or bubble trains can
be produced by using a single injector directly connected to pressurized air tank [4].
Second, a homogeneous swarm of rising bubbles is continuously generated when an
injector set is inserted into the set-up and chamber [3] is connected to the pressure-
controlled air tank [4]. The gas volume fraction α is controlled by adjusting the gas
flow rate. The use of a large number of capillary tubes regularly distributed over the
bottom cross-section of the tank ensures the generation of a stable bubble column
(without large-scale recirculation flows) up to α of several tens of a percent. Then, it
is possible to switch the connection of air chamber [3] from air tank [4] to air tank
[5] by means of electrovalves [6]. The pressure in air tank [5] is low enough so that
the bubble formation is suddenly stopped, but large enough so that no water can
flow down through the capillary tubes to air chamber [3]. Since bubbles are no longer
produced, we observe the rise of a bubble swarm followed by a region that is free of
bubbles. This third operating mode allows us to study the wake developing behind a
swarm of bubbles.

Below, we describe the experimental techniques used to investigate the two-phase
flow. We shall not describe in detail high-speed imaging, dual optical probe and LDA,
which are now classic techniques operated here similarly as in Ellingsen & Risso
(2001) and Risso & Ellingsen (2002). In contrast, we shall detail the determination
of the velocity spectra in the wake of the bubble swarm by PIV because it is an
innovation of this work.

2.1. Gas phase characterization

First, a single capillary tube has been used to determine the size of the bubbles that
are produced by each class of injectors and to characterize the bubble dynamics
for the reference case of an isolated bubble (α ≈ 0). Vanishing volume fractions
allows us to make use of accurate high-speed imaging techniques. Two perpendicular
high-speed digital cameras were used to take pictures of the bubbles, the contours
of which being then detected by image processing. It gives access to the bubble size,
aspect ratio, velocity and orientation (table 1).
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The equivalent bubble diameter has been measured just after the detachment
from the tip of the capillary by both imaging and acoustic techniques. The acoustic
technique (see Manasseh, Riboux & Risso 2008, for details) consists in measuring
the frequency fa of the sound emitted by the bubble, which is related to the bubble
diameter by the expression

d =
1

π fa

√
3γP0

ρ
, (2.1)

where P0 is the water absolute pressure, γ the gas specific heat and ρ the liquid density.
Measurements were carried out for different capillaries of each set and various gas
flow rates, which corresponded to gas volume fractions ranging from 0 to 0.04 when
the whole sets of injectors are used. Both methods lead to the same results. For small
volume fractions, the bubble size is controlled by the static balance between buoyancy
and surface tension and therefore does not depend on α. To the injectors diameters
dc = 0.1, 0.2 and 0.4 mm correspond the bubble diameters d = 1.6±0.2, 2.1±0.1 and
2.5±0.2 mm, respectively. The variations indicated after the symbol ± characterize
the polydispersity due to discrepancies between the different capillary tubes of a
given set. Up to α = 1.5 %, the bubble sizes remain equal to the quasi-static value
within the interval defined by the polydispersity. For larger α, we observed a regular
increase of the bubble size with the gas volume fraction, which has been estimated
by optical probe measurements within the bubble swarm: at α =10 %, the average
diameter has been increased by 50 % for dc =0.1 mm, 40 % for dc = 0.2 mm and 30 %
for dc = 0.4 mm.

Figure 2 shows examples of bubble evolutions along the trajectories and table 1
presents their main characteristics. As observed by Ellingsen & Risso (2001), the
bubble takes a spheroidal shape with an aspect ratio χ between 1.4 and 2, their
minor axis being parallel to their velocity. The smallest bubble (d = 1.6 mm) rises on
a straight line whereas the others (d =2.1 and 2.5 mm) follow an oscillatory path
with an amplitude A close to 5 mm, a maximal inclination θ between 25◦ and 28◦

and an oscillation frequency f close to 5 Hz. The average vertical velocity (V0 = 309–
335 mm s−1) is in agreement with the measurements performed by Maxworthy et al.
(1996) for clean bubbles. It does not depend significantly on the bubble diameter for
the considered bubbles; the Reynolds number (540 � Re � 760), the Weber number
(2.6 � We � 3.3) and the drag coefficient (0.19 � Cd0 � 0.35) thus vary essentially
through the bubble size.

For α > 0, the properties of the gas phase inside the bubble swarm are measured
by means of optical probes. Each probe provides an electric signal, the magnitude
of which depends on the optical index of the phase that surrounds the probe tip.
This analogue signal is digitalized and recorded by a computer. A threshold is then
applied to distinguish the gas from the liquid. A single optical microprobe with
conical tip of 10 μm is used to determine the gas volume fraction. The sampling
frequency has to be adjusted to ensure a correct bubble detection and the recording
time has to be large enough to allow the statistical convergence. With a sampling
frequency of 10 kHz and a recording times larger than 800 s, the gas volume fraction
is obtained with an accuracy better than 2%. Figure 3 presents various profiles
of α at different locations within the test section and for different gas flow rates.
Figure 3(a) shows that the bubbles are uniformly distributed in the central part of
the tank (−40 mm � X, Y � 40 mm), whereas figure 3(b) shows that the gas volume
fraction has reached a constant value for vertical elevations Z larger than 300 mm.
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Figure 2. Bubble evolutions along the trajectories for the three different diameters: to the
left, three-dimensional trajectories; in the middle, projection on the two camera planes; to
the right, exact spheroids superimposed to experimental bubble contours: (a) d = 1.6 mm;
(b) d = 2.1 mm; (c) d = 2.5 mm.
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In the following, all presented results have been obtained at a single point located in
the middle of the tank (X =Y = 0), where the swarm is uniform, and at Z = 500 mm,
where the regular distribution of the capillaries has been forgotten.

A dual optical probe is used to measure bubble velocities. The two probes are
separated by a vertical distance dp = 0.54 mm. The signal provided by each probe is
first processed as that of the single probe. Since the distance between the probe
is at least three times smaller than the bubble diameter, it is possible to associate
unambiguously the successive passages of a bubble on the two probes and to determine
the corresponding time interval �t . For each detected pair of bubble, the ratio dp/�t

provides a sample of bubble vertical velocity V . Due to interactions with the first
probe, some bubbles are detected by the first probe but not by the second. In other
rare cases, two different bubbles touch quasi simultaneously the two probes, leading
to unrealistic large velocities. These erroneous cases are discarded by applying an
upper and a lower thresholds on �t . Finally, PDFs of the bubble velocity are thus
obtained (see figure 9). This method has been validated by Kiambi et al. (2003) who
compared its results with those obtained by mean of high-speed imaging. It allows
an accurate determination of the bubble average vertical velocity 〈V 〉. On the other
hand, it overestimates the fluctuations of the bubble velocity because it also accounts
for fluctuations of the bubble orientation. The variance obtained from this method is
however a good parameter to characterize the overall bubble agitation and is used for
that purpose in § 3. Also, it is worth mentioning that for the bubble volume fraction,
residence time and size considered, coalescence was not observed.

2.2. Measurements of liquid fluctuations within the bubble swarm

The liquid velocity inside the bubble swarm has been measured by means of a two-
component LDA operated in forward-scattering mode. The LDA system consists of
an Ar-ion laser source (Spectra Physics 2016) with a DANTEC optical arrangement
that includes two photo-multipliers equipped with green and blue filters, and two
burst spectrum analysers (DANTEC 57N10). The LDA provides measurements of the
vertical component of the liquid velocity (Z direction) and one horizontal component
(Y direction). The two measurement volumes are ellipsoids with a major axis of
0.15 mm in the X direction, and two minor axes of 0.04 mm in the Y and Z
directions. Due to the interception of the laser beams by the bubbles, the LDA data
rate decreases with the gas volume fraction. A few decigrams of Iriodin 111 was thus
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Figure 4. PDF of liquid velocity fluctuations at various elevations Z for d =2.1 mm and
α = 0.007: (a) vertical component Uz/V0; (b) horizontal component Ux/V0.

added to the water and allowed us to obtain data rates of 80 Hz at α = 0.005 and
10 Hz at α = 0.04. Recording durations ranging from 8×102 s and 1.2×103 s were
used to ensure a number of samples of at least 104 for all investigated cases. The
optical and electronic adjustments of the LDA set-up are the same as those used
by Ellingsen & Risso (2001) who showed that the PDFs of horizontal and vertical
liquid velocities, Ux and Uz, were obtained without bias in the range −0.7〈V 〉−0.7〈V 〉.
Figure 4 shows PDFs of Ux and Uz measured at three different elevations in the tank,
Z = 305, 405 and 505 mm. The three curves are similar, confirming that the bubble
swarm has reached a state independent of the elevation for Z � 300 mm.

2.3. Measurements of liquid-fluctuation moments and spectra in the swarm wake

A major objective of the present investigation was to determine the length scales of
the liquid agitation. This cannot be obtained by LDA since it requires simultaneous
measurements of the liquid velocity in various locations. Also, whatever the
experimental technique, this can hardly be achieved inside the bubble swarm where the
bubbles cause any measured signal to be discontinuous. To overcome these difficulties,
we decided to measure the velocity field after the passage of the bubble swarm by
means of a fluorescent high-speed PIV technique. This has two drawbacks: (i) since
the measuring window is fixed, we are considering an unsteady flow that evolves as
the bubbles rise away; (ii) we need to determine whether the properties of the swarm
wake are significant of the flow within the homogeneous swarm. These points, which
concern the physical interpretation, will be addressed later in the sections devoted to
the presentation of the results. Here, we focus on the description and the validation
of the experimental method.

Small particles of encapsulated rhodamine (≈10 μm, 1.5 g cm−3) are added to the
water to serve as fluorescent tracers; they can be considered as neutrally buoyant as
they take several hours to sediment through the whole test section. No modification
of the swarm dynamics was observed due to the presence of these tracers. A 10
mJ Yag laser (New wave, Pegasus) generates a vertical sheet of light of wavelength
527 nm with a thickness of about 0.8 mm. A high-speed video camera (Photron ultima
APX) synchronized with the laser pulses acquires digital images of 1024×1024 pixels.
The measurement window is a square of 5.12 cm width located 400 mm above the
injectors in vertical mid-plane of the tank. The resulting pixel size is thus 0.05 mm.
The laser light is maximum within the measurement window where its variation is
less than 3%. The PIV acquisition is started after the stationary bubble swarm has
developed while the air injection is still running. Then, the injection is stopped and
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Figure 5. Instantaneous liquid velocity field measured by PIV behind the bubble swarm
using interrogation cells of 16 × 16 pixels (d = 2.5 mm, α = 0.0046).

the PIV recording is continued. Since the bubbles inside the swarm are rising more
slowly than an isolated bubble, the interface between the bubbly region – where the
gas volume fraction is uniform – and the single-phase region – which follows the
swarm – remains sharp. It is flat in the middle of the tank and curved downward
close to the wall where the bubbles rise more slowly. In the following, the time origin
is defined as the instant corresponding to the first image where no bubble is present.

The frame rate is fixed at 200 Hz and the velocity field is calculated between each
pair of consecutive images by means of the PIV code developed in our laboratory
(Cid & Gardelle 2005). Classic iterative algorithms using subpixel image shift and
deformation are used. The PIV parameters are adjusted to optimize the computation
of the velocity field in the absence of the bubbles for interrogation cells of 8×8
or 16×16 pixels: the measured displacements range between 1/10 and 1/4 of the
width δ of the interrogation cells, which each contains at least 10 particles. Velocity
vectors are computed every δ/2 by overlapping interrogation cells of 50 %. Then,
vectors located at less than nδ from the borders are removed to avoid border errors
in the computational algorithm: n =8 for the 8×8 case and n= 6 for the 16×16
case. Figure 5 shows an example of raw velocity field computed with interrogation
cells of 16×16 pixels. It is worth noting that this field is the direct result of the PIV
computation without any suppression of erroneous vectors. The reproducibility and
the statistical convergence have been checked by performing each experiment three
times.

The energy of the fluctuations is slightly higher at the top of the measurement
window, which is closer to the rear of the bubble swarm. However, calculating the
standard deviation of the liquid velocity over the whole measurement window without
taking into account the inhomogeneity in the vertical direction leads to an error of
only 2.5 %. Consequently, we shall assume that the fluctuations are homogeneous over
the measurement windows and use all the corresponding velocity vectors to estimate
statistical quantities. In particular, the spatial spectrum of the vertical velocity Szz

is calculated by means of a fast Fourier transform (FFT) for each vertical column
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Figure 6. Spectra of vertical fluctuations computed from PIV velocity fields obtained by using
either interrogations cells of 8 × 8 or 16 × 16 pixels. The spectra computed from raw data
are compared with those computed from data that are interpolated after suppression of false
vectors (d = 2.5 mm, α = 0.0046).

of the two-dimensional PIV velocity field and then averaged over all the columns.
The average spatial spectrum of the horizontal velocity Sxx is obtained in the same
manner from the horizontal rows of the PIV velocity field.

Figure 6 shows PIV spectra of the vertical velocity obtained for α = 0.005 and
d =2.5 mm. Hereinafter, all the spectra will be plotted as a function of the reciprocal
of the wavelength (λ−1) instead of the wavenumber (k = 2πλ−1) because it is more
convenient to make comparisons with characteristic length scales, as the bubble
diameter. Note that the energy of wavelengths λ smaller than the cell size δ

is filtered out. The Nyquist–Shannon sampling theorem states that the smallest
resolved wavelength is twice the signal sampling step. Since the velocity vectors are
computed every δ/2, the smallest wavelength resolved in the spectra is therefore δ

and corresponds to the filtering scale of the PIV meshgrid. The spectra computed
with cells of 16×16 pixels (dashed lines) are thus defined for λ larger than δ = 0.8 mm,
whereas those computed with cells of 8×8 pixels (solid lines) are defined for λ larger
than δ = 0.4mm. The spectra computed from the 16×16 and 8×8 raw PIV velocity
fields (thin lines) are identical for λ larger than 1.5 mm and slightly differ for smaller
ones. This indicates the existence of a PIV noise at small scales due to some erroneous
PIV velocity vectors.

Westerweel & Scarano (2005) developed a general method to detect such spurious
vectors. This method is based on a normalized median test applied to the PIV
displacement vector field �. For each point i, the residual is defined as the absolute
value of the difference between �i and the median value �im of the eight surrounding
points: ri = | �i − �im |. Then, the median value of the residual rim is calculated over
the eight surrounding points. Finally, the normalized residual is defined by

r ′
i =

ri

rim + ε
, (2.2)

where ε is a parameter that fixes the acceptable level of fluctuation of the residual
test. A measurement is considered erroneous when the corresponding normalized
residual r ′

i is larger than a given threshold r ′
max . The optimal values, ε = 0.1 pixel

and r ′
max = 2, have been determined from numerous tests involving flows of various

Reynolds numbers ranging from 10−1 to 107. Applied to the present PIV results, this
method detects 3.6 % false vectors for the computation using 16×16 cells and 16 %
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for those using 8×8 cells. After suppression of the false vectors, a regularly sampled
two-dimensional velocity field is reconstructed by using the griddata Matlab function,
which is based on Delaunay’s triangulation. The thick lines in figure 6 represent the
corrected spectra calculated after suppressions of false vectors and interpolations.
First of all, we remark that the four spectra match for λ larger than 2 mm. The region
of the spectra that exhibits a λ3 power law is thus observed for both cell sizes and
whatever spurious vectors are suppressed or not. There is therefore no doubt about
the existence of this particular power law behaviour in this range of λ. Then, we
observe that the best-resolved raw and corrected spectra (solid lines) match for λ
larger than about 1.4 mm, indicating that the λ5/3 law, which is observed to follow
the λ3 law, is not an artifact due to PIV noise. Actually, the best-resolved corrected
spectra (thick solid line) follows the λ5/3 trend while λ is larger than 0.6 mm, and it is
only for smaller wavelengths that a plateau due to the sampling noise is reached. We
are therefore confident that the spectra computed from 8×8 PIV results are correct
for all wavelengths larger than 0.6 mm. In the following, we shall only present the
best-resolved corrected spectra up to this limit.

3. Dynamics of the bubbles
We start with the description of the gravity-driven motion of the bubbles, which is

the cause of the flow. Figure 7 shows the average bubble velocity 〈V 〉 as a function of
the gas volume fraction for 0.002 � α � 0.12 and the three different bubble diameters.
The velocity is normalized by the average velocity V0 of a single rising bubble, which
corresponds to a vanishing volume fraction. Note that the three values of V0 differ by
less than 10 % (see table 1) because the investigated diameters belongs to the region
where the rise velocity against the bubble diameter reaches a maximum (see figure
5 in Maxworthy et al. 1996). Figure 7 also presents results of previous experimental
studies. Zenit et al. (2001) and Martinez-Mercado et al. (2007) investigated a stable
bubble column quite similar to ours; for sake of clarity only the results of Zenit et al.
(2001) are plotted in the present figure. For air–water bubbles of 1.4 mm diameter,
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their results are in good agreement with ours. The investigations of Roig & Larue de
Tournemine (2007) and Garnier et al. (2002) also considered homogeneous bubbly
flow, but with a non-zero liquid upward velocity 〈U〉; consequently 〈V 〉 is then defined
as the mean bubble velocity minus the mean liquid velocity. Garnier et al. (2002)
investigated a pipe flow with 〈U〉 less than 0.06 m s−1 and their results for d = 3.5 mm
are close to those obtained in stable bubble columns provided the gas volume fraction
is larger than 4 %. Roig & Larue de Tournemine (2007) investigated a channel flow
with a larger mean liquid velocity, between 0.45 and 0.59 m s−1; for d = 1.75 mm, they
found that 〈V 〉 is much smaller than the rise velocity of a single bubble in a fluid at
rest and that its evolution with α is different. This is probably due to the fact that
the bubbles are observed to be more deformed in their experiment because of the
shear-induced turbulence generated by the channel flow. In every case, the hindrance
effect makes 〈V 〉 to be a decreasing function of α. Provided the effect of the mean
liquid velocity and the corresponding shear-induced turbulence are negligible, this
function is reasonably approximated by 〈V 〉 =V0 (1 − α0.49).

Martinez-Mercado et al. (2007) reported a discontinuity between V0 and the
measured values of 〈V 〉 for α of a few tenths of a percent. The same trend is observed
in figure 7. One may thus wonder whether the rise velocity of the isolated bubble is
the relevant velocity scale for 〈V 〉 in the range of volume fraction investigated here.
To clarify this point, the present results are plotted in dimensional form in figure 8.
Rather than a discontinuity, we observe a continuous transition, which depends on
d , between V0 and the value of 〈V 〉 at α∗

0 = 0.005. Then for α � α∗
0 , the values of 〈V 〉

collapse on a master curve for α∗
0 � α � 0.1, which is approximated well by

〈V 〉 = V ∗
0 (α/α∗

0)
−0.1 with V ∗

0 = 0.318 mm s−1. (3.1)

Now we consider the agitation of the bubbles. Figure 9 shows the PDFs of the
bubble velocity fluctuations for the three diameters and various volume fractions.
All PDFs have the same asymmetric shape, strong upward fluctuations being more
probable than strong downward ones. For a given bubble diameter, the PDFs do not
evolve visibly with the gas volume fraction. This independence of the bubble velocity
fluctuations upon α was already noticed for a narrow range of volume fractions
(0.005 � α � 0.01) and a single bubble diameter (d = 2.5 mm) by Risso & Ellingsen
(2002) and then reported by Martinez-Mercado et al. (2007) for broad ranges of
Reynolds numbers (50 � Re � 500) and volume fractions (0.01 � α � 0.1).
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α: (a) d = 1.6 mm; (b) d = 2.1 mm; (c) d =2.5 mm.
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Provided the Reynolds number is large enough, the wake of a single bubble
becomes unstable and the bubble performs path oscillations. This explains why the
agitation of the bubbles may not vanish as α tends towards zero. Then, when α

increases the bubble agitation does not evolve as long as the contribution of the
path oscillations dominates over bubble interactions. This interpretation seems to not
hold for the smallest bubbles considered here (d = 1.6 mm) since an isolated bubble
of the same size has a stable wake and rises at constant velocity on a straight path.
However, we observe path oscillations at finite gas volume fraction as small as 0.2 %.
Slight perturbations due to hydrodynamic interactions between the bubbles are thus
capable to initiate path instabilities. But once the path oscillations have started, their
amplitudes are independent of the magnitude of these perturbations.

Figure 10 confirms that the bubble velocity variance is constant from α∗
0 . Moreover,

this constant (≈11×10−2 m2 s−2) is the same for the three investigated diameters.
Therefore, even if the velocities of the single rising bubbles differ slightly between
the three diameters investigated, the bubble average velocity as well as the bubble
fluctuations are the same for the three diameters in the range 0.005 � α � 0.1. This
leads to two important conclusions. First, we would like to stress that even if this
paper deals with moderate volume fractions, the regime that is investigated do not
correspond to the limit of very dilute volume fractions where bubble interactions are
totally negligible. Second, since the velocity scale is the same for all three considered
diameters, all disparities between the results corresponding to the different bubble
sizes will only result from the change of length scale. In other words, the Reynolds
or the Weber numbers will only differ due the diameter change.

4. Dynamics of the liquid within the bubble swarm
Figure 11 shows the normalized PDFs of the two components of the liquid

fluctuations for various volume fractions and the three bubble diameters. Vertical
fluctuations (first column) are not isotropic, large upward fluctuations being more
probable due to the entrainment of the flow in the wake of the bubbles. On the other
hand, horizontal PDFs are symmetric since the flow generated around each bubble is
axisymmetric in average and the horizontal bubble distribution is statistically uniform.
A semi-log plot of the same data is presented in figure 12 to make visible that the
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1.6 mm; (b) d = 2.1 mm; (c) d = 2.5mm (α0 = 0.01 and V0 is the velocity of a single rising
bubble).
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probability decays exponentially as the fluctuations increase. Note that if the velocity
fluctuations were the sum of the velocity perturbations induced by an infinite number
of bubbles, the central-limit theorem should imply to observe a Laplace–Gauss
probability function. However, the number of bubbles in any finite volume
surrounding the measurement point is finite because so is the gas volume fraction.
That is the reason why we can observe asymmetric PDFs in the vertical direction
as well as exponential decays, which are slower than the Gaussian decay but fast
enough to ensure that all statistical moments are finite. It is interesting to note
that such an exponential decay has been observed by Abbas & Climent (2006) for
suspensions in the Stokes regime at volume fractions of a few percents. The fact of
finding an exponential decay for radically different hydrodynamics confirms that this
behaviour is rather related to statistical convergence than to the nature of the flow
induced by the bubble motion.

Figures 11 and 12 also show that the PDFs are self-similar when varying the gas
volume fraction provided the velocity fluctuations are normalized by

u = V0α
0.4. (4.1)

This scaling was first found by Risso & Ellingsen (2002) for a single bubble size
(d = 2.5 mm) and a narrow range of gas volume fractions (0.005 � α � 0.01). It was
then confirmed for a broad range of Reynolds number by Martinez-Mercado et al.
(2007) who used mixtures of water and glycerin of various concentrations. It is here
confirmed again for bubbles rising in water for three different diameters and volume
fractions up to 0.05. To check the validity of this self-similarity at larger gas volume
fractions, we also determined the PDFs of the vertical fluctuations from the data of
Larue de Tournemine (2001), which correspond to d =1.75 mm and volume fractions
ranging from 0.015 to 0.14. Figure 13 (upper part) shows that the normalized PDFs
match very well our results for bubbles of 1.6 mm. The scaling V0α

n is thus proved to
be valid up to α = 0.14 with an exponent n= 0.4 ± 0.02.
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and γz = 0.12 for d =1.6 mm; γx =0.12 and γz = 0.18 for d = 2.1 mm; γx = 0.13 and γz =0.18
for d =2.5 mm.

It is worth recalling that the velocity V0 used in (4.1) corresponds to the rise
velocity of a single bubble. In the range of parameters considered in the present
work, the average velocity 〈V 〉 of the bubbles inside the swarm has been found to be
proportional to α−0.1 (defined in (3.1)). From the present results, it is thus equivalent
to consider that the velocity fluctuations scale as u =V0α

0.4 or u = 〈V 〉α0.5. From a
practical point of view, it is more relevant to normalize the present PDFs by using
V0 as velocity scale since the small experimental uncertainty in the determination
of 〈V 〉(α) would slightly increase the scattering of the PDFs. Moreover, in the case
investigated by Roig & Larue de Tournemine (2007), the evolution of 〈V 〉 with α is
totally different (figure 7) and therefore allows us to distinguish the two relations:
the scaling V0α

0.4 make the PDFs obtained for various volume fractions to collapse
(figure 13a) whereas the scaling 〈V 〉α0.5 (figure 13b) does not. This seems thus to
confirm that the velocity fluctuations scale as α0.4 times a velocity scale that does
not depend on α. One can doubt that this velocity is actually the average velocity
of a single rising bubble, the physical relevance of which is difficult to interpret for
α > 0. It could rather be the velocity scale (gd)1/2 related to the buoyancy force,
which balances the drag force on each bubble. Nevertheless, PDFs obtained for more
contrasted bubble diameters are required before to conclude about this point.

Figure 14(a, b) compare the normalized self-similar PDFs of the horizontal and
vertical fluctuations obtained for the three different bubble diameters. The results
for the two larger diameters (d = 2.1 and 2.5 mm) are similar while the PDFs
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corresponding to the smallest diameter (d = 1.6 mm) are slightly narrower. We
determined the standard deviation γi(d) of each normalized PDFs: γx = 0.09, γz = 0.12
for d = 1.6 mm; γx = 0.12, γz = 0.18 for d =2.1 mm; γx = 0.13, γz = 0.18 for d =2.5 mm.
Figure 14(c, d ) show that after normalization by their standard deviation, the PDFs
for the smallest diameter now collapse with the two others. The only difference is
therefore that liquid fluctuations for the smallest bubbles have slightly less energy.
The ratio of the vertical to horizontal standard deviations, which characterizes
the anisotropy of the liquid fluctuations, is close to 1.4 for the three investigated
diameters.

5. Liquid velocity fluctuations behind the bubble swarm
We investigate now the flow that develops behind the bubble swarm after the

gas injection has been stopped. Figure 15 shows the time evolution of the standard
deviations, uz and ux , of the velocity fluctuations measured by PIV in a fixed window
located in the middle of the tank (see § 2.3), for the three diameters and various
volume fractions. The record was started before air injection was stopped. The first
PIV measurements are thus noisy due to the presence of bubbles in the measurement
section. It is however clearly visible that the energy of the fluctuations inside the
bubble swarm is constant. For larger times, the magnitude of the fluctuations then
decays as the bubble swarm rises up away from the measurement section. We first
defined the origin of the time t as the instant t0 when the last bubble leaves the
measurement window. But since the last bubble visible in the PIV images is located
close to the wall, its rise velocity is lower than the rise velocity of the swarm rear in
the middle of the channel. The decay of the fluctuations starts therefore before t0. In
order to reveal a power-law decay by the use of a logarithmic representation, the time
abscissa in figure 15 has been shifted by introducing a virtual origin tv: t∗ = t − tv ,
In all considered cases and for both components, the fluctuating velocity decays as
t∗−1 during the first regime that occurs behind the bubble swarm. Provided they are
normalized by their value at a given instant, say t∗

0 = t0 − tv , the standard deviations
write

ui

ui0

=
t∗
0

t∗ . (5.1)

Note that the value of the virtual origin tv has been adjusted to obtain the best fit by
expression (5.1): tv = −0.4 s for d = 1.6 and 2.5 mm, tv = −0.5 s for d = 2.1 mm. This
regime of decay lasts approximately 0.4 s, which is the time for the bubbles to travel
about 15 cm.

The solid lines in figure 16 represent the PDFs of the horizontal and vertical
velocity fluctuations normalized by their standard deviation, for the largest bubble
size (d = 2.5mm). The results are plotted in semi-log for various instants belonging
to the first regime of decay (0.01 � t � 0.3 s) and three different volume fractions
(α =0.0046, 0.025 and 0.07). Whatever the volume fraction, the normalized PDFs do
not depend on time. This self-preserving behaviour indicates that the decay of the
fluctuating energy does not affect the statistical distribution of the fluctuations. The
dashed lines represent the inner PDFs measured inside the bubble swarm (t < 0) which
differ from the downward PDFs obtained for t > 0. While the fluctuations inside the
bubble swarm come from perturbations generated at any distance from the bubbles,
the fluctuations observed behind the bubble swarm only result from bubble wake
interactions. Thus, the differences between the inner and the downward PDFs give us
an idea of the relative contributions of the individual perturbations generated in the
vicinity of each bubble and the collective fluctuations produced by wake interactions.
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Figure 15. Time evolutions of the standard deviations of the liquid velocity fluctuations
after the passage of the bubbles normalized by their values at time t0: (a) d = 1.6 mm;
(b) d = 2.1 mm; (c) d = 2.5 mm.

While PDFs measured inside the bubble swarm are clearly non-Gaussian, PDFs
measured behind it become Gaussian: horizontal PDFs are approximately parabolic
and vertical ones come to be symmetric as the volume fraction increases. The large
fluctuations responsible for the non-Gaussian behaviour are thus mostly generated in
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Figure 16. PDFs of the liquid fluctuations normalized by the standard deviations at the
corresponding instants for d = 2.5 mm: (a) α = 0.0046; (b) α = 0.025; (c) α =0.07.
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Figure 17. Vertical and horizontal spectra, Szz and Sxx , of the liquid velocity fluctuations
normalized by the variances at various instants t after the passage of the bubbles (d = 2.5 mm,
α = 0.0046).

the bubble vicinity. This is in agreement with the results of Risso & Ellingsen (2002)
who showed that the conditioned PDFs corresponding to the flow in the vicinity of
the bubbles was much more asymmetric than unconditioned PDFs corresponding to
the flow everywhere inside the bubble swarm.

The vertical and horizontal spectra, Szz and Sxx , have been measured using
the procedure detailed in § 2.3. Figure 17 presents the spectra at various instants
(0.01 � t � 0.15 s) and shows that they do not evolve significantly during the first
regime of decay, provided they are normalized by the velocity variance at the
corresponding instants. For the range of wavelengths investigated, the agitation
preserves the same structure while it is decaying as the distance to the bubble swarm
increases. Hereinafter, all the presented spectra have been measured at t = 0.01 s. As
for the PDFs, these spectra are measured in a region where there is no bubble and thus
do not account for the flow generated in the vicinity of the bubbles, which includes
the potential perturbation above and besides the bubble and a short attenuated
wake behind it (see Risso & Ellingsen 2002, for a detailed description). They however
describe the agitation that results from the interactions of the perturbations generated
by all the bubbles. At variance with the PDFs, the present work do not provide
measurements of spectra within the bubble swarm. Comparisons with results of other
studies will be present in the next section after a scaling for the spectra will have
been proposed. They will allow us to discuss this point.

Figure 18 collects spectra corresponding to the three bubble diameters and various
volume fractions ranging from 0.004 to 0.12. Provided they are normalized by the
variance of the fluctuations, the large scales of all the spectra collapse on a single
master curve. For the range of parameters investigated, the large scales of the bubble-
induced turbulence appear therefore to be independent of both d and α. The integral
length scale Λ, roughly estimated from the value of the spectrum at the origin
(Szz(0)/u2

z) is approximately 15 mm, indicating that most of the energy belongs to
wavelengths λ much larger than the bubble diameters (d = 1.6–2.5 mm). Depending
on λ, three different regimes can be distinguished. At the largest scales, the spectrum
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shows no particular feature. For scales ranging between Lc ≈ 7.7 mm and lc ≈ 2 mm,
the spectral density of energy follows a λ3 power law. Because the upper and lower
boundary, Lc and lc, are also independent on both d and α, they are proportional to
the integral length scale Λ. Moreover, since the value of Lc is of the same order to
that of Λ, it can be used as an alternative length scale to characterize the large scales,
with the advantage that it can be determined more accurately from the spectrum.
Then, for λ� lc, the λ3 power law is replaced by a λ5/3 power law, which probably
corresponds to a classic Kolmogorov inertial subrange. At scales smaller than the
resolution of the present experimental technique, the spectrum should eventually be
ended by a dissipative range. To achieve the description of the spectrum, we thus
need to determine the dissipation rate ε.

Inside the bubble swarm, the intensity of the liquid agitation is constant because
the work of the drag forces exerted by the bubbles balances the energy dissipation
within the liquid. Behind the bubble swarm, there is no more energy production and
the kinetic energy ke of the fluctuations starts decaying:

dke

dt
= −ε. (5.2)

Defining u =(u2
z + 2u2

x)
1/2 = (2ke)

1/2 and combining (5.1) with (5.2) yields

ε =
u2

0t
∗2
0

t∗3
=

u3

Lε

, (5.3)

where Lε = u0t
∗
0 is independent of time. Note that the chosen instant of reference is

arbitrary and has no consequence on the result; the scale Lε may be calculated from
any instant belonging to the first regime of decay during which the structure of the
fluctuations (both PDFs and spectra) does not evolve. Figure 19(a) shows that Lε is
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the same for the three investigated diameters. As expected, it is of the same order
of the large characteristic length scales; but in contrast with Λ and Lc, it increases
with the gas volume fraction as

Lε

Lc

∝ Lε

Λ
∝ α0.3. (5.4)

Knowing the dissipation, it is interesting to estimate the Kolmogorov microscale η in
order to locate the dissipative range that probably ends the spectrum. The fact that
the spectrum follows a λ5/3 power law at the smallest resolved wavelengths suggests
the use of the classic relation: η = (ν3/ε)1/4 ((3.2.14) in Tennekes & Lumley 1972).
(Note that since the λ5/3 range is preceded by a λ3 range, we cannot be sure that
the energy that cascades the inertial subrange is equal to the total dissipation; this
expression might thus underpredict the value of η.) Figure 19(b) shows the evolution
of η0 obtained by applying this theoretical expression to the experimental values ε0 of
the dissipation rate at t = 0. The microscale η0 is almost the same for the three bubble
diameters and decreases from 2.4 × 10−2Lc to 1.4 × 10−2Lc when α increases from
0.046 to 0.12 by evolving broadly as α−0.6. This means that there is a little less than
two decades between the integral scale and the cutoff wavelength of the spectrum,
which is close to 0.1 mm for the cases investigated here.

It is worth noting that the agitation described here is radically different from grid
turbulence. The reason lies in the fact that we are focusing on the self-preserving
region that immediately follows the bubble swarm where the agitation generated by
the interactions of individual bubble perturbations has not had time to reorganize
yet. One could expect that farther behind the bubble swarm the agitation will relax
towards isotropic turbulence as it is the case at a certain distance downstream a
fixed grid. We have however no evidence of such a reorganization since the present
experiments were not designed to investigate this point.

6. Summary of main results and discussion
The study of the liquid velocity fluctuations generated in a stable bubble column

allowed us to determine the scaling laws for the velocity scale u and the dissipation
rate ε of the bubble-induced turbulence. Moreover, spatial spectra measured in the
region immediately following the rising homogeneous swarm shows undoubtedly a
range where the spectral density of energy follows a power law of the wavelength
with an exponent close to 3. This confirms the claim by Lance & Bataille (1991)
that the existence of such a spectral behaviour is the signature of the bubble-induced
turbulence. A question remains however open: which is the characteristic length scale
of this phenomenon? Two candidates jump to mind. The bubble diameter d and the
average distance between bubbles, lm = (π/6α)1/3d , which is a decreasing function of
the gas volume fraction. For 1.6 � d � 2.5mm, the spectra are independent of d and
the λ3 behaviour is observed for wavelengths larger than d . For d = 5 mm, Lance &
Bataille (1991) observed the λ3 behaviour only for wavelengths smaller than d . The
diameter is therefore not the right scale. Then, since the measured spectra are observed
to be independent of α, it can neither be lm. By considering thoroughly the results of
this work, it is however possible to find the characteristic scale.

Let us recall the scaling laws obtained for 1.6 � d � 2.5mm and 0.005 � α � 0.1,
which relate the flow characteristics to the gas volume fraction α and the mean rise
velocity of the bubbles in the limit of small volume fractions V0. First, the mean
bubble velocity 〈V 〉 (figure 8) is found to scale as

〈V 〉 ∝ V0 α−0.1, (6.1)
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whereas the bubble velocity variance (figure 10) is independent of α. Note that
the validity of (6.1) is strictly restricted to the range 0.005 � α � 0.1, but its form
is convenient for the present purpose. It is not clear which is the correct scaling
for smaller α and from which volume fraction hydrodynamics interactions between
bubbles start to play a role. On the other hand, the correlation V0(1−α0.49) is suitable
for large volume fractions.

Concerning the liquid, the PDFs of the velocity fluctuations preserve the same
shape as the gas volume fraction is increased. The knowledge of the evolution of a
single characteristic velocity, say the standard deviation u, is therefore sufficient. The
present measurements confirm the scaling proposed first by Risso & Ellingsen (2002),

u ∝ V0α
0.4, (6.2)

which was confirmed here to be valid for volume fractions up to at least 0.14 thanks
to the data of Larue de Tournemine (2001) .

By combining (5.3), (5.4) and (6.2) the dissipation rate ε can be expressed as function
of the volume fraction and the integral length scale Λ (found to be independent of α):

ε ∝ V 3
0

Λ
α0.9. (6.3)

Another way to determine ε consists in considering that in a steady bubble swarm,
the dissipation has to be balanced by the work of the buoyancy force:

ε = αg〈V 〉. (6.4)

Now, substituting the expression of 〈V 〉 from (6.1) into (6.4) yields

ε ∝ gV0α
0.9. (6.5)

Considering that the expression of ε given by (6.3) was obtained from the decay of
the kinetic energy of the fluctuations after the passage of the bubble swarm, it is
remarkable that (6.3) and (6.5) both lead to that ε is proportional to α0.9. Equating
(6.3) and (6.5) therefore leads to an expression of Λ that is independent on α,

Λ ∝ V 2
0

g
∝ d

Cd0

, (6.6)

where Cd0 = 4gd/3V 2
0 is the drag coefficient for a single rising bubble. This expression

is consistent with the fact that the large scales of the spectra are independent on
the volume fraction and confirms that the investigation of decaying bubble-induced
turbulence was relevant to describe the structure of the agitation within the bubble
swarm. Moreover, since the bubble velocity is the same for the three investigated
diameters, this expression is also consistent with the fact that the spectra obtained
with these three diameters were similar. It remains to check this expression for
bubbles having a different rise velocity. Figure 20 compares the spectra of the present
work to those obtained by Lance & Bataille (1991) and Larue de Tournemine (2001)
after normalization by using d/Cd0 as characteristic length scale. Note that it is
only in our case that the spectrum Sxx of the horizontal velocity component is
available and that it is similar to the spectrum Szz of the vertical velocity component.
For the present results (1.6 � d � 2.5 mm) and those of Larue de Tournemine
(2001) (d =1.75 mm), d/Cd0 = 8.6 mm. In the case of Lance & Bataille (1991), the
bubbles are about twice larger (d = 5 mm, V0 = 0.24 m s−1), but the length scale,
d/Cd0 = 4.4 mm, is about twice smaller.
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Figure 20. Spectra normalized by using the variance and the characteristic length scale d/Cd 0:
solid lines, present study with 1.6 mm � d � 2.5 mm; [1] Lance & Bataille (1991) with d = 5 mm;
[2] Larue de Tournemine (2001) with d = 1.75 mm.

On the one hand, we see that all the spectra match well at large scales and,
in particular, the beginning of the λ3 range is observed for the same wavelength,
Lc ≈ d/Cd0 for all bubble sizes and for both the vertical and the horizontal velocity
components. Firstly, the agreement with the results of Larue de Tournemine (2001),
which were obtained for a similar bubble size but within the bubble swarm, shows
that the large scales are dominated by wake interactions and are not significantly
influenced by the absence of the flow perturbation in the close vicinity of the bubbles.
We can therefore conclude that the spectra measured just behind the bubble swarm
describe well the scales larger than lc. Secondly, the agreement with the results of
Lance & Bataille (1991), which were obtained for larger bubbles, confirms the validity
of the scaling (6.6).

On the other hand, for wavelengths smaller than lc ≈ Lc/4, the λ3 range is replaced
by a λ5/3 range in the present spectra, whereas the λ3 range extends up to the smallest
resolved scale in the spectra of Larue de Tournemine (2001) or is even prolonged by a
steeper evolution in the case of Lance & Bataille (1991). Some experimental conditions
used by Lance & Bataille (1991) and Larue de Tournemine (2001) differ from ours
and may cause the observed discrepancies at small scales: (i) they investigated bubbles
rising in a moving fluid so a certain amount of shear-induced turbulence is present;
(ii) they used time series of single-point measurements that were interpolated; (iii)
they computed time spectra that were changed into spatial spectra by using the
Taylor hypothesis. It is also possible that the existence of a λ5/3, which is probably the
signature of a return to isotropy at small scales, can only be observed in the absence
of the strong perturbations generated in the vicinity of the bubbles; in that case, the
small scales observed behind the bubble swarm would differ from those measured
within it. We are nevertheless not able to propose a definitive interpretation of the
differences with our results.
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All together, the self-similar shape of the PDFs, the normalized spectra for both
velocity components and relations (6.2), (6.3) and (6.6) provide an almost complete
description of the dynamics of the liquid agitation induced by bubbles rising in water
in the absence of any other cause of fluctuations, at least for gas volume fractions
ranging from 0.005 to 0.14 and diameters from 1.5 to 5 mm. The next challenge will
be to understand the physical mechanisms responsible for the self-similarity of the
PDFs and the λ3 range in the spectra. Concerning the PDFs, we already know that
the non-Gaussian shape as well as the anisotropy is due to the flow in the vicinity
of each bubble since the fluctuations recover isotropy and Gaussian distribution just
behind the bubble swarm. Concerning the λ3 range, the present results indicates
that it implies hydrodynamic interactions between the flow disturbances induced by
individual bubbles since it was observed for wavelengths much larger than the bubble
diameter. The interpretation proposed by Lance & Bataille (1991), which was based
on the assumption of an equilibrium between production and dissipation within each
individual wake, is therefore invalidated. Future models for bubble-induced agitation
have to generate fluctuations at scales of order d/Cd0 whatever the value of d .

We would like to thank Sébastien Cazin and Emmanuel Cid for technical support
with instrumentations and Véronique Roig for providing us with valuable data
obtained during the PhD work of Larue de Tournemine (2001).
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